A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo.
نویسندگان
چکیده
Use of short interfering RNA (siRNA) is a promising new approach thought to have a strong potential to lead to rapid development of gene-oriented therapies. Here, we describe a newly developed, systemically injectable siRNA vehicle, the "wrapsome" (WS), which contains siRNA and a cationic lipofection complex in a core that is fully enveloped by a neutral lipid bilayer and hydrophilic polymers. WS protected siRNA from enzymatic digestion, providing a long half-life in the systemic circulation. Moreover, siRNA/WS leaked from blood vessels within tumors into the tumor tissue, where it accumulated and was subsequently transfected into the tumor cells. Because the transcription factor KLF5 is known to play a role in tumor angiogenesis, we designed KLF5-siRNA to test the antitumor activity of siRNA/WS. KLF5-siRNA/WS exhibited significant antitumor activity, although neither WS containing control scrambled-siRNA nor saline containing KLF5-siRNA affected tumor growth. KLF5-siRNA/WS inhibited Klf5 expression within tumors at both mRNA and protein levels, significantly reducing angiogenesis, and we detected no significant acute or long-term toxicity. Our findings support the idea that siRNA/WS can be used to knock down specific genes within tumors and thereby exert therapeutic effects against cancers.
منابع مشابه
مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملA Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo
The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanopart...
متن کاملMaterializing the potential of small interfering RNA via a tumor-targeting nanodelivery system.
The field of small interfering RNA (siRNA) as potent sequence-selective inhibitors of transcription is rapidly developing. However, until now, low transfection efficiency, poor tissue penetration, and nonspecific immune stimulation by in vivo administered siRNAs have delayed their therapeutic application. Their potential as anticancer therapeutics hinges on the availability of a vehicle that ca...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملManipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions
Tumor-associated macrophages (TAMs) are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 69 16 شماره
صفحات -
تاریخ انتشار 2009